Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema Öztürk, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Ersin Orhan ${ }^{c}$ and Orhan Büyükgüngör ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Inönü University, 44069 Malatya, Turkey, ' Department of Chemistry, Faculty of Arts and Sciences, Karaelmas University, 67100 Zonguldak, Turkey, and
department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.042$
$w R$ factor $=0.097$
Data-to-parameter ratio $=20.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ethyl-3-(2-phenylethyl)benzimidazole-2-selone

The title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}$, was synthesized by heating bis[1-ethyl-3-(2-phenylethyl)benzimidazolidin-2-ylidene] and selenium in toluene. The dihedral angle between the benzimidazole ring system and the phenyl ring is $17.2(2)^{\circ}$.

Comment

In recent years, considerable attention has been given to the synthesis of new benzimidazole compounds. In particular, the synthesis of the anti-ulcer drug omeprazole, which contains the benzimidazole moiety, has promoted studies in this area (Carlsson et al., 2002). On the other hand, selenium-containing compounds may play some important role in biological systems, depending on the species (Küçükbay \& Demir, 2001). Tetraaminoethylenes are strong reducing agents and react with selenium to give cyclic selenoureas in high yield. We have also synthesized and elucidated the crystal structure of some cyclic selenoureas and related compounds (Aydın et al., 1999; Íngeç et al., 1999; Çetinkaya et al., 1996) and screened them for in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and the yeasts Candida albicans and Candida tropicalis (Çetinkaya et al., 1996; Küçükbay \& Durmaz, 1997). The objectives of the present study were to elucidate the crystal structure of the recently synthesized title compound, (I) (Küçükbay et al., 2003), and compare the results with those of related cyclic urea derivatives reported previously (Aydın et al., 1999; Íngeç et al., 1999).

(I)

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The $\mathrm{Se} 1-\mathrm{C} 1$ bond length of 1.829 (3) \AA is similar to that [1.825 (7) \AA] found in 1,3-dimethylbenzimidazole-2-selone (Aydın et al., 1999). The mean value of the $\mathrm{N}-\mathrm{C}$ bond lengths in (I) is 1.374 (4) \AA, and this and the values of the other geometric parameters are in agreement with the literature data (Aydın et al., 1998; Allen et al., 1987). The benzimidazole ring system (C2-C7/N1/C1/N2) of (I) is planar (r.m.s deviation of fitted atoms is $0.01 \AA$). The dihedral angle between the phenyl ring

Received 11 June 2004 Accepted 21 June 2004 Online 26 June 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomnumbering scheme and 50% probability displacement ellipsoids.

Figure 2
A view, down the b axis, of the packing of (I).
(C12-C17) and the benzimidazole ring is $17.2(2)^{\circ}$. A view of the molecular packing in (I) is presented in Fig. 2.

Experimental

A mixture of bis[1-ethyl-3-(2-phenylethyl)benzimidazolidin-2-ylidene] $(1.0 \mathrm{~g}, 2.00 \mathrm{mmol})$ and selenium $(0.33 \mathrm{~g}, 4.24 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ was heated under reflux for 2 h . Then the mixture was filtered to remove unreacted selenium and all volatiles were removed in vacuo (0.02 mmHg). The crude product was crystallized from alcohol upon cooling to 243 K (yield: $1.16 \mathrm{~g}, 87 \%$; m.p. $376-377 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR (TFA): $\delta 0.4\left(t, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.0\left(t, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}\right), 3.4\left(q, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, 2 H), 3.7 ($t, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 2 \mathrm{H}$), 5.8-6.2 ($m, \mathrm{Ar}-\mathrm{H}, 4 \mathrm{H}$), 6.7 ($s, \mathrm{Ar}-\mathrm{H}, 5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.72,34.70,41.96,43.05,109.90,110.00,123.62$, $123.63,127.20,129.10,129.42,132.80,133.46,138.39,165.31 . v_{(\mathrm{C}=\mathrm{Se})}$: $1487 \mathrm{~cm}^{-1}$. Analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}$: C $60.95, \mathrm{H} 5.08, \mathrm{~N}$ 8.85%; found: C 60.76 , H 5.08, N 9.03%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}$
$M_{r}=322.29$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.6427(5) \AA$
$b=12.7380(12) \AA$
$c=15.5045(9) \AA$
$V=1509.41(19) \AA^{3}$
$Z=4$
$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2270
reflections
$\theta=2.1-29.0^{\circ}$
$\mu=2.48 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colorless $0.31 \times 0.26 \times 0.22 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: by integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.514, T_{\text {max }}=0.612$
13746 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.097$
$S=1.03$
3831 reflections
183 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0372 P)^{2}\right.$ $+0.3896 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

3831 independent reflections
2914 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.087$
$\theta_{\text {max }}=28.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-19 \rightarrow 21$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0095 (13)
Absolute structure: Flack (1983);
1584 Friedel pairs
Flack parameter $=0.288(13)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Se1-C1	$1.829(3)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.360(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.371(4)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.377(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.399(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.456(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.459(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$109.3(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$106.6(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$125.4(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$131.3(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$125.4(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 7$	$107.1(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$110.4(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 2$	$106.6(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 10$	$123.7(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$131.1(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 10$	$125.7(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$112.9(3)$
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{N} 1$	$126.3(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$112.1(3)$
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{N} 2$	$127.0(2)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Se} 1$	$179.9(3)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$-83.4(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Se} 1$	$-1.3(5)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-164.8(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$96.3(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$63.8(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-85.1(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	$-115.3(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$91.3(4)$		

H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$) and allowed to ride on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. The Flack parameter indicates partial inversion twinning.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). The authors HK and EO also thank İnönü University (grant No. 2000/05) for financial support for this study.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aydın, A., Soylu, H., Güneş, B., Akkurt, M., Ercan, F., Küçükbay, H. \& Çetinkaya, E. (1998). Z. Kristallogr. 213, 473-476.
Aydın, A., Soylu, S., Küçükbay, H., Akkurt, M. \& Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.

organic papers

Carlsson, E., Lindberg, P. \& Unge, S. (2002). Chem. Br. 5, 42-45.
Çetinkaya, B., Çetinkaya, E., Küçükbay, H. \& Durmaz, R. (1996). Arzneim Forsch. Drug Res. 46, 1154-1158.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Íngeç, Ş. K., Soylu, H., Küçükbay, H., Ercan, F. \& Akkurt, M. (1999). Anal. Sci. 15, 927-928.

Küçükbay, F. Z. \& Demir, M. (2001). Turk. J. Chem. 25, 341-347.
Küçükbay, H. \& Durmaz, B. (1997). Arzneim Forsch. Drug Res. 47, 667-670.
Küçükbay, H., Durmaz, R., Orhan, E. \& Günal, S. (2003). Il Farmaco, 58, 431437.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

